Data-driven tight frame construction and image denoising
نویسندگان
چکیده
Sparsity based regularization methods for image restoration assume that the underlying image has a good sparse approximation under a certain system. Such a system can be a basis, a frame, or a general over-complete dictionary. One widely used class of such systems in image restoration are wavelet tight frames. There have been enduring efforts on seeking wavelet tight frames under which a certain class of functions or images can have a good sparse approximation. However, the structure of images varies greatly in practice and a system working well for one type of images may not work for another. This paper presents a method that derives a discrete tight frame system from the input image itself to provide a better sparse approximation to the input image. Such an adaptive tight frame construction scheme is applied to image denoising by constructing a tight frame tailored to the given noisy data. The experiments showed that the proposed approach performs better in image denoising than those wavelet tight frames designed for a class of images. Moreover, by ensuring that the system derived from our approach is always a tight frame, our approach also runs much faster than other over-complete dictionary based approaches with comparable performance on denoising.
منابع مشابه
Image denoising based on improved data-driven sparse representation
Sparse representation of images under certain transform domain has been playing a fundamental role in image restoration tasks. One such representative method is the widely used wavelet tight frame systems. Instead of adopting fixed filters for constructing a tight frame to sparsely model any input image, a data-driven tight frame was proposed for the sparse representation of images, and shown t...
متن کاملData-Driven Tight Frame for Multi-Channel Images and Its Application to Joint Color-Depth Image Reconstruction
In image restoration, we usually assume that the underlying image has a good sparse approximation under a certain system. Wavelet tight frame system has been proven to be such an efficient system to sparsely approximate piecewise smooth images. Thus it has been widely used in many practical image restoration problems. However, images from different scenarios are so diverse that no static wavele...
متن کاملExtending SAR Image Despckling methods for ViSAR Denoising
Synthetic Aperture Radar (SAR) is widely used in different weather conditions for various applications such as mapping, remote sensing, urban, civil and military monitoring. Recently, a new radar sensor called Video SAR (ViSAR) has been developed to capture sequential frames from moving objects for environmental monitoring applications. Same as SAR images, the major problem of ViSAR is the pres...
متن کاملCT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization
This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of [1] and that of the data-driven tight frames for image denoising [2]. It is different from existing models in that both CT image and its corresponding high quality projection image...
متن کاملSparse Representation on Graphs by Tight Wavelet Frames and Applications
In this paper, we introduce a unified theory of tight wavelet frames on non-flat domains in both continuum setting, i.e. on manifolds, and discrete setting, i.e. on graphs; discuss how fast tight wavelet frame transforms can be computed and how they can be effectively used to process graph data. We start from defining multiresolution analysis (MRA) generated by a single generator on manifolds, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013